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Right ventricular (RV) dysfunction is the main cause of death in pulmonary arterial hypertension (PAH). Our understanding of the
pathophysiology of RV dysfunction is limited but improving. Methods to better diagnose RV dysfunction earlier and treatments
specifically designed to minimize or reverse the remodeling process are likely to improve outcomes. We review the current
understanding of RV dysfunction in chronic pressure overload and introduce some novel insights based on recent investigations
into pathophysiology, diagnosis, and treatment.

1. Introduction

Dysfunction of the right ventricle (RV) can occur in a
number of clinical scenarios including pressure overload,
cardiomyopathies, ischemic, congenital, or valvular heart
disease, arrhythmias, and sepsis. Pressure overload can occur
in an acute or chronic setting. Diagnosis is made on the
compilation of data from the history and physical exam-
ination, electrocardiogram, chest X-ray, echocardiogram,
and invasive hemodynamics. RV failure is associated almost
universally with poor prognosis. Early recognition is essential
to improve outcomes. Although pressure overload can occur
with pulmonary valvular stenosis, the most common cause of
pressure overload is pulmonary arterial hypertension (PAH).
Recent advances, particularly in PAH management, have
highlighted the importance of RV function and stimulated
renewed interest in better understanding its adaptation
to pressure overload. This is particularly evident over
the past year, in which RV function has been reviewed
several times [1, 2], as has echocardiographic methods
of imaging the RV [3], RV function in cardiac and tho-
racic surgery [4–6], the mechanisms underlying RV failure
in PH [7], and the treatment of acute right heart failure
[8].

2. Chronic RV Pressure Overload

PAH is defined as a mean pulmonary artery pressure
>25 mm Hg with a pulmonary capillary wedge pressure,
left atrial pressure, or left ventricular end-diastolic pressure
≤15 mm Hg [9]. Historically, long-term outcomes have been
quite poor because of progressively increasing hyperten-
sion resulting in severe RV failure. But clinical outcomes
have significantly improved with the recent advent of
several pulmonary-specific vasodilators [10–13], such as
prostanoids, endothelin receptor antagonists, and phos-
phodiesterase 5A (PDE5A) inhibitors. Median survival for
patients with PAH without treatment is 2.8 years with 1-,
3-, and 5-year survival rates of 68%, 48%, and 34%,
respectively [10]. With continuous prostanoid treatment,
survival has improved 87-88%, 63–71%, and 56%, respec-
tively [12, 14]. Similar results have been seen with the oral
endothelin receptor antagonist bosentan (82–96% survival
at 1 year; 67–89% 2-year survival) [15]. RV function is
a critical determinant of patient outcomes in PAH and
has recently been recognized as an important avenue for
further research [16]. RV failure is the end result of PAH
and the cause of at least 70% of all PAH deaths [10].
Unfortunately, identifying which patients will progress to RV
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failure and at what time in the course of disease has been
difficult.

3. Pathophysiology of RV Adaptation to Chronic
Pressure Overload

One of the key features to RV adaptation to chronic pressure
overload is hypertrophy. In general terms, this is felt to be due
to increased wall stress due to increased pressure (Laplace’s
Law). Myocyte size increases via the synthesis of additional
sarcomeres [7]. Extracellular matrix increases as well, with
resultant increased fibrosis. At some point, adaptation is
insufficient in the face of the pressure overload, resulting
in dilation, decreased systolic and diastolic function, and
frank RV failure. Unfortunately, this sequence of events
is not understood well in the RV. There is a decrease in
α-subtype myosin heavy chain relative to the β-subtype
that is implicated in decreased systolic function [17, 18].
Actin expression is also altered in PAH, as might be the
troponin complex [7]. Pressure overload causes alterations
in β-adrenoreceptor and angiotensin type 1 receptor den-
sities. As with LV failure, RV failure is associated with
upregulation of the renin-angiotensin system. RV ischemia
also has been documented in PAH indicating that oxygen
supply-demand mismatch is likely implicated in the devel-
opment of RV hypertrophy and failure [19] which may be
due to decreased microvasculature recruitment or reduced
vasodilatory capacity [7]. Upregulation of myocyte apoptosis
in the pressure-overloaded RV also likely contributes to
progressive RV dysfunction [7]. Mitochondrial nitric oxide
synthase (mtNOS) is upregulated in the hypertrophied RV
myocardium and is partially reversed by treatment with
the PDE5A inhibitor, sildenafil [20]. These findings are
in keeping with prior studies showing increases in PDE5
expression [21], the mitochondrial membrane potential
[22], and glucose uptake [23] in RV tissue in patients
with PAH and may represent a novel target for RV-specific
therapeutic intervention [24].

Regional heterogeneity of RV remodeling and dysfunc-
tion has been observed in patients with PAH [25]. Hypertro-
phy is greatest in the RV outflow tract and worse in patients
with decompensated RV function (Figure 1). Regional wall
thickening, as a measure of regional function, is significantly
decreased in the outflow tract (infundibulum) of patients
regardless of RV functional status, with corresponding
increased wall stress in this region. Initial reports from
our group have suggested that alterations in regional RV
structure and function, particularly in the outflow tract,
precede overt hemodynamic RV decompensation, in that
patients with less severe RV failure have selective outflow
tract hypertrophy, whereas patients with severe RV failure
have a generalized RV hypertrophy. These results need to
be confirmed prospectively in patient cohorts in whom
the progression of disease can be followed over time and
treatments, but this asymmetrical hypertrophic response is
consistent with an earlier study that found greater fiber
shortening in the outflow tract compared with the RV sinus
region and a sequential timing of contraction in the two

regions [26]. Hypertrophy and dysfunction in the outflow
tract may be an early sign of RV impending RV failure and
suggests that a better understanding of RV remodeling on
a regional level may greatly advance our knowledge of RV
response to disease.

4. Identifying RV Dysfunction

Identifying RV dysfunction at less severe stages, which would
allow for earlier intervention and potentially better long-
term results, has been limited largely due to complex RV
three-dimensional geometry that defies the assumption of a
simple ellipsoid, complex LV/septum interactions, and lack
of accepted approaches to assess regional and organ-level
RV function. Current markers of RV failure that have been
associated with poor outcomes only recognize end-stage
disease. There have been several recent approaches to better
identify RV dysfunction.

The clinically accepted gold standard for identifying RV
dysfunction and understanding physiology in the pressure-
overloaded state remains invasive hemodynamics [1]. Right
atrial pressure, cardiac output, and mean pulmonary arterial
pressure all have been prognostic of outcomes in PAH
[10]. Measurement of hemodynamics with exercise can
further identify PAH not apparent at rest, distinguish from
LV diastolic dysfunction, and aid in prognosis (failure to
increase cardiac output with exercise) [1]. Pressure-volume
loops of RV function in chronic PAH can provide additional
information beyond standard hemodynamics. For example,
prostacyclin has been shown to improve ventricular-vascular
coupling (ratio of contractility as defined by the end-
systolic pressure-volume relationship, Ees, to afterload as
defined by pulmonary arterial elastance, which itself is the
ratio of end-systolic pressure to stroke volume; Figure 2)
[27]. This methodology has been used to show enhanced
contractility (end-systolic pressure-volume relationship, Ees)
despite lower cardiac output and ventricular-vascular decou-
pling (lower ratio of Ees to pulmonary arterial elastance,
Ea) in PAH [28]. Measures of hemodynamics that take
into consideration the pulsatility of pulmonary blood flow
further offer an opportunity to better understand the
hydraulic load that the RV encounters. Increased vascu-
lature stiffness results in increased fluid wave reflections
and an increased RV pump workload. While pulmonary
vascular resistance (transpulmonary gradient divided by
cardiac output) is the clinical standard measurement of
pulmonary vascular load, this only provides information
on the static load. However, 1/3 − 1/2 of the pulmonary
load (hydraulic power) is due to the pulsatile nature of
blood flow [1]. Load in a pulsatile flow system is better
characterized by input impedance. One recent study of
pulmonary vascular input impedance in 49 pediatric patients
with PAH predicted clinical outcomes at one year better
than pulmonary vascular resistance [29]. Such measures
of pulsatile load and ventricular-vascular coupling may
help explain when and how the RV fails [30], leading
to improved diagnosis and more individualized treatment
[31].
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Figure 1: Regional heterogeneity of RV remodeling and dysfunction observed in patients with pulmonary hypertension. Patients were
divided into one of three groups based upon hemodynamic parameters: Normal (normal pulmonary artery [PA] pressure, defined as
mean PA pressure ≤25 mmHg), PH-C (PH with hemodynamically compensated RV function, defined as mean PA pressure >25 mmHg and
right atrial [RA] pressure <10 mmHg), and PH-D (PH with hemodynamically decompensated RV function, defined as mean PA pressure
≥25 mmHg, and RA pressure ≥10 mmHg). (a) Regional RV wall thickness in end diastole (ED, filled symbols) and end systole (ES, open
symbols). (b) Corresponding fractional wall thickening. ∗P < 0.05 PH-C versus Normal or PH-D versus Normal; †P < 0.05 PH-D versus
PH-C, from [25].

Echocardiography is a standard clinical method to
assess the RV in PAH. It has, as its major advantage, its
noninvasive nature allowing sequential studies over time
and good visualization of the major RV structures and
functions in a dynamic fashion. Although echocardiographic
assessment of pulmonary artery pressure can be made from
the tricuspid regurgitant jet, treatment decisions based on
PAH hemodynamics need to be confirmed invasively. Addi-
tionally, the ability to estimate pulmonary artery pressure
from the tricuspid regurgitant jet is quite useful, although
for treatment decisions in PAH hemodynamics must be
confirmed invasively. Fractional area change (FAC), as a
surrogate of ejection fraction, is calculated by analyzing the
difference in the cross-sectional area of the RV in systole
and diastole and has prognostic value in small studies, as
does RV enlargement, tricuspid regurgitations, pericardial
effusion, and the Tei (myocardial performance) index [9].
Newer techniques include tissue Doppler imaging (TDI)
and speckle tracking. Peak systolic strain of the RV free
wall by TDI is reduced in PH patients, and this measure
correlates with transpulmonary gradient, pulmonary vas-
cular resistance, and cardiac index [32]. RV free wall peak
systolic strain has been found to decrease with PH and
decreases further with RV decompensation [33]. TDI of the
RV has also demonstrated good correlation with cardiac
magnetic resonance (CMR) derived RV ejection fraction
[34]. Speckle tracking has also been used to quantify RV
myocardial strain and may be a valuable method to detect
preclinical disease because it detects minor changes not
easily quantified by TDI. For example, speckle tracking
RV myocardial strain patterns have identified abnormal
RV contraction in systemic sclerosis patients with nor-
mal pulmonary pressures, even when other markers such
as tricuspid annular plane systolic excursion were un-
changed from normal [35–37]. A reliable method to identify

pre-clinical RV dysfunction would be an important advance
in RV imaging. Three-dimensional echocardiography has
been validated as a method to assess RV volumes and has
been used to evaluate RV function [38–40]. Limitations
of echocardiography include limited acoustic windows for
imaging the complex three-dimensional structure of the RV.

CMR has been useful for anatomical assessment of the
RV and more recently functional assessment as well. Two
recent reviews of CMR in PAH have recently been published
[41, 42]. RV volume, mass, and stroke index measures by
CMR predicted 1-year survival in 64 PAH patients [43].
Measures of PA stiffness by CMR (pulsatility, compliance,
capacitance, distensibility, elastic modulus, and the pressure-
independent stiffness index) have been reported to be a
sensitive measure of early PAH [44]. Blood flow imaging by
CMR has been used to detect vortices of blood flow in the
main pulmonary artery of patients with PAH [45]. However,
many, if not most, measures of RV function by CMR are not
yet standardized.

Computed tomography (CT) also can be useful to assess
RV structure and function due to its high spatial resolution,
accessibility, and quick scan times, though it is limited by
radiation and contrast exposure [46–48]. CT has been used
to identify regionally heterogeneous RV remodeling and dys-
function in pulmonary hypertension [25]. This is consistent
with findings of a study by CMR and echocardiography that
found greater fiber shortening in the outflow tract compared
with the RV sinus region [26].

5. Treatment of Pressure Overload-Induced
RV Dysfunction

Clinical trials data are still quite limited on the effect of PAH-
specific treatment on RV function as are data on any specific
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Figure 2: Example of ventricular-vascular coupling analysis. Systolic portions of the RV pressure-volume curves showing end-systolic
elastance (Ees) and arterial elastance (Ea) lines. Ventricular-vascular coupling (Ees/Ea) is improved with prostacyclin due to a decrease in
arterial elastance (Ea) in a dog with acute RV failure induced by transient pulmonary artery constriction. (a) Prior to prostacyclin infusion.
(b) After prostacyclin infusion. (c) Ventricular-vascular coupling efficiency (Ees/Ea) at baseline, during pulmonary artery constriction
(Constr.), after pulmonary artery release, and during prostacyclin infusion at 2 doses (n = 7; values are means + standard error). #P < 0.05
compared with baseline; §P < 0.05 compared with release, adapted from [27].

therapy for RV dysfunction. Regression of RV hypertrophy
has been seen after 1 year of treatment with high-dose cal-
cium channel blocker [49]. Prostacyclin treatment has been
associated with modest RV reverse remodeling, specifically
reversing some dilation and sphericity, as well as improved
RV stroke volume [50, 51]. In a small retrospective study,
the endothelin receptor antagonist bosentan resulted in
improvements in invasive hemodynamics, functional status,
and a trend in improvement in RV stroke volume, but no
significant change in RV volume or ejection fraction [52].
The PDE5A inhibitor sildenafil increases RV contractility
in isolated rat heart preparations and individual cardiomy-
ocytes [21]. A least one ongoing multicenter PAH treatment
study (with bosentan) is currently evaluating RV response to
treatment with serial cardiac MRI with results hopefully to
be reported within the next year [53].

There are some unique therapies in early-stage investi-
gation that have been reported specifically to improve RV
function in the pressure-overloaded state. A plant extract

improved RV function in a rat model of PAH with severe
RV failure [54]. A tissue-engineered skeletal myoblast sheet
improved RV diastolic function, minimized fibrosis, and
increased capillary density in a rat model of PAH [55].
There has been a suggested role for RV pacing as cardiac
resynchronization therapy in PAH as RV dyssynchronous
contraction has been observed to correlate with disease
severity [56–58].

6. Conclusion

Although our knowledge of RV dysfunction in chronic
pressure overload is progressing, there is still much that
needs to be understood. Particular attention should be paid
to the impact of PAH on ventricular-vascular interactions
and how pathophysiologic derangements result in organ level
dysfunction. Regional assessments of the RV may provide
an avenue for better understanding mechanisms of RV
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dysfunction and earlier diagnosis because nonhomogeneous
RV adaptation appears to be an early marker of impending
RV failure in PAH. Importantly, novel therapies to specif-
ically improve RV remodeling and dysfunction in chronic
pressure overload are greatly needed.
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